
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) – OPERATING SYSTEMS GROUP

Betriebssysteme
16. File Systems

Prof. Dr.-Ing. Frank Bellosa |WT 2016/2017

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu

http://www.kit.edu

File Systems

Motivation, Introduction

File Management

Directory Management
Objectives:

To explain the function of file systems
To describe the interfaces to file systems
To discuss file-system design tradeoffs

access-methods
file sharing
file locking

Motivation File Systems

F. Bellosa – Betriebssysteme WT 2016/2017 2/55

Motivation (1)

OS Abstraction HW Resource
Processes, Threads CPU

Address Space Main Memory (RAM)
Files Disk, CD, . . .

Files are the third major OS-provided abstraction over HW resources

Do we still need files and a classical file system or better a database
with an object store?

Motivation File Systems

F. Bellosa – Betriebssysteme WT 2016/2017 3/55

Motivation (2)

Enable storing of large amount of data
File - contiguous logical address space

File types:
data

numeric
character
binary

Program

Store data/program consistently & persistently

Look-up easily previously stored data/program

Motivation File Systems

F. Bellosa – Betriebssysteme WT 2016/2017 4/55

File Systems

Most files are still located on disks which are really messy physical
devices:

Errors, bad blocks, redundant arrays of disks (RAID), . . .

Job of an OS is to hide this mess from higher level software
Low-level device control (initiate a disk read, etc.)
High-level abstractions (read file)

OS might provide different levels of disk access to different clients
(applications)

Physical disk (surface, cylinder, sector)
Logical disk = partition (disk block#)
Logical volume = multiple partitions (volume block#)
Logical file (file block, record, byte#)

Motivation File Systems

F. Bellosa – Betriebssysteme WT 2016/2017 5/55

Overview File System

OS may support multiple file systems
Instances of the same FS type
Different FS types, e.g. ext2 & Reiser

All file systems are typically bound into a single namespace
Often hierarchical as a rooted tree

Internal node = directory (mount point)

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 6/55

File
Collection of related information

Executable program
Text files
Compressed binary images
Structured document
. . .

A file has a set of attributes, i.e. its meta data
Attributes differ between OSes and FSs, e.g.

Name, identifier
Type
Location (physical address of a file on device)
Size (# bytes or # blocks)
Protection (who can access and how)

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 7/55

Typical File Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner

Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASCII/binary flag 0 for ASCII file; 1 for binary file
Random access flag 0 for sequential access only; 1 for random access

Temporary flag 0 for normal; 1 for delete file on process exit
Lock flags 0 for unlocked; nonzero for locked

Record length Number of bytes in a record
Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time Date and time the file was created
Time of last access Date and time the file was last accessed
Time of last change Date and time the file has last changed

Current Size Number of bytes in the file
Maximum size Number of bytes the file may grow to

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 8/55

File Structure (1)

None - sequence of words, bytes
Simple record structure

Lines
Fixed length
Variable length

Complex Structures
Formatted document
Relocatable executable object

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 9/55

File Structure (2) (OS’s Point of View)

Three kinds of files:
(a) byte sequence (provides maximal flexibility)

(b) record sequence (often with fixed sized records)

(c) Tree (sometimes with variable sized records)
Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 10/55

File Types

Regular files
executable, dll, object, source, text, . . .

Special files
Directory, device (character, block), links

A file’s type can be encoded (see man 1 file) in
its FS internal data structure (e.g. Unix)

Inode

its name (e.g. file extensions in Windows)
.com, .exe, .bat, .dll, .jpg, . . .

its content (e.g. Unix)
magic number or an initial character (e.g. #! for shell scripts)

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 11/55

Regular File Types (1)

file type
usual

extensions
function

executable
exe, com, bin or
none

ready-to-run machine-language program

object obj, o compiled, machine language, not linked

source code
c, cc, java, pas,
asm, a

source code in various languages

batch bat, sh commands to the command interpreter
text txt, doc textual data, documents

word processor wp, tex, rtf, doc various word-processor formats
library lib, a, so, dll libraries of routines for programmers

print or view ps, pdf, jpg
ASCII or binary file in a format for printing
or viewing

archive arc, zip, tar
related files, grouped into one file, someti-
mes compressed, for archiving or storage

multimedia
mpeg, mov, rm,
mp3, avi

binary file containing audio or A/V informa-
tion

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 12/55

Regular File Types (2)

(a) Executable file (e.g. ELF)

(b) Archive file (e.g. tar)

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 13/55

Abstract File Operations

A file is an abstract data type/object offering

create()

write()

read()

reposition() (within a file)

delete()

truncate()

open(Fi) - search the directory structure on disk for entry Fi , and
move its meta data to memory

close(Fi) - move cached meta data of entry Fi in memory to
directory structure on disk

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 14/55

Interaction with a FS

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 15/55

Goals of File Management

Provide a convenient naming scheme for files

Provide uniform I/O support for a variety of storage device types

Provide standardized set of I/O interface functions

Minimize/eliminate loss or corruption of data

Provide I/O support and access control for multiple users

Enhance system administration (e.g., backup)

Provide acceptable performance

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 16/55

File Names
FS with a convenient naming scheme, e.g.

Textual names
Restricted alphabet, i.e.

Only certain characters (e.g. no ? or /)
Limited length
only certain formats, e.g.
DOS: 8 character string.xyz character suffix
XP: 255 character string.xyz character suffix
Case (in)sensitive
Names must fulfill certain convenient, extension xyz.c (or xyz.C) if
C(++)-Compiler should run

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 17/55

Open Files

Several meta data are needed to manage open files:
file pointer: pointer to last read/write location, per process that has the file
opened
access rights: per-process/task access mode information
file-open count: counter of number of times a file is opened - to allow
removal of data from open-file table when last process closes
disk location: cache of data access information

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 18/55

File Access
Strictly sequential access (early system)

read all bytes/records from the beginning
cannot jump around, could only rewind
sufficient as long as storage was a tape

Random access (current systems)
bytes/records read in any order
essential for database systems

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 19/55

File Organization and Access

Possible access patterns:
Read the whole file
Read individual blocks of a file
Read blocks preceding/following the current one
Retrieve a subset of records
Write/update a complete file sequentially
Insert/delete/update one record in a file
Update blocks in a file

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 20/55

Access Methods

Sequential Access

read next
write next
rewind
no read after last write
append

Direct access

read n
write n
position to n
read next
write next

n = relative position number

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 21/55

File Access Methods(2)

Plain (unstructured) file (generic file)
Entity: byte (sometimes: block)
If an application wants to structure a persistent data container it has to
implement its internal structure

Structured file
Entity: record (or user type objects. . .)

Remark:
Since Unix, many OSes only offer plain files, applications and libraries can
implement specific structured file types on top of this.

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 22/55

A Sequential Access to a File

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 23/55

Operations on Unstructured Files

CreateFile(pathname)
DestroyFile(pathname)
OpenFile(pathname, read/write)
ReadFile(FID, byte-range, memory location)
WriteFile(FID, byte-range, memory location)
CloseFile(FID)
PositionPointer(FID,position for pointer)

Remark:
memory location is the data area within AS of the calling process
(e.g. within heap or stack)

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 24/55

Plain File

Definition:
A plain file is a sequence of bytes (gaps are possible). Typically located on
a disk

Characteristic: You can randomly access any byte within an
unstructured file if you have positioned its file pointer appropriately.

Problem: Disks cannot access bytes; only blocks.

Solution: Buffer file blocks (classical method) or entire files (memory
mapped files) within main memory

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 25/55

Structured File

Records = logical entities tightly coupled to a specific application, e.g. record of an

employee

Employee-file might contain all relevant information, e.g.

employee number, family name, . . . ,

employee position, department number,

passport number, birth date, salary, etc.

Records of equal size or not (then additional length field is needed)
Records with a special key field (⇒ some ordering within a file)

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 26/55

Example: File Operation I

Usage of the following program: $ copyfile abc xyz

#include <sys / types . h> /∗ i nc lude necessary header f i l e s ∗ /
#include < f c n t l . h>
#include <s t d l i b . h>

i n t main (i n t argc , char ∗argv []) ; /∗ ANSI pro to type ∗ /

#define BUF SIZE 4096 /∗ use a b u f f e r s ize o f 4096 bytes ∗ /
#define OUTPUT MODE 0700 /∗ p r o t e c t i o n b i t s f o r output f i l e ∗ /

i n t main (i n t argc , char ∗argv [])
{

i n t i n f d , ou t fd , rd count , wt count ;
char b u f f e r [BUF SIZE] ;

i f (argc !=3) e x i t (1) ; /∗ syntax e r r o r i f argc i s not 3 ∗ /

/∗ Open the inpu t f i l e and create the output f i l e ∗ /
i n f d = open (argv [1] , O RDONLY) ; /∗ open the source f i l e ∗ /
i f (i n f d < 0) e x i t (2) ; /∗ i f i t cannot be opened , e x i t ∗ /

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 27/55

Example: File Operation II

o u t f d = create (argv [2] ,OUTPUT MODE) ; /∗ create the d e s t i n a t i o n f i l e ∗ /
i f (o u t f d < 0) e x i t (3) ; /∗ i f i t cannot be created , e x i t ∗ /

/∗ Copy loop ∗ /
while (TRUE) {

rd count = read (i n f d , bu f fe r , BUF SIZE) ; /∗ read a block o f data ∗ /
i f (rd count <= 0) break ; /∗ i f end of f i l e or e r ro r , e x i t loop ∗ /
wt count = w r i t e (ou t fd , bu f fe r , rd count) ; /∗ w r i t e data ∗ /
i f (wt count <= 0) e x i t (4) ; /∗ wt count <= 0 i s an e r r o r ∗ /

}

/∗ Close the f i l e s ∗ /
c lose (i n f d) ;
c lose (o u t f d) ;
i f (rd count == 0) /∗ no e r r o r on l a s t read ∗ /

e x i t (0) ;
else

e x i t (5) ; /∗ e r r o r on l a s t read ∗ /
}

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 28/55

Goal of Directories
Naming: convenient to users

Two users can have same name for different files
The same file can have several different names

Grouping: logical grouping of files by properties
all Java programs
all games
all programs of a project
. . .

Efficiency: fast operations

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 29/55

Operations Performed on a Directory

Create a file

Delete a file

Rename a file

Traverse the file system

List a directory

search for a file

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 30/55

Directory (Folder) (1)

Directory is a node in a FS owned by an (authorized) subject (e.g. root)
containing information about (some or all) files of the FS

Both directories and files reside on disk or . . .
Backups of these both objects are kept on tapes etc.

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 31/55

Directory (Folder) (2)

The collection of directories and files establish a (hierarchical) FS
structure
In Linux there are some special directories e.g.

root
home
working

Principle structure of a modern FS is a rooted tree
Pathnames help to unambiguously identify files
Provides mapping between file names → files

Process of file retrieval = navigation

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 32/55

Single-Level Directory

A single directory for all users

Naming problem

Grouping problem

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 33/55

Two-Level Directory

Separate directory for each user

Path name
Can have the same file name for different user
Efficient searching
No grouping capability

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 34/55

Tree-Structured Directories

Efficient Searching & Grouping Capability
Current directory (working directory)

cd /spell/mail/prog
type list

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 35/55

Role of Working Directory

Absolute pathnames can be tedious, especially when FS is deep
Idea of a (current or) working directory cwd

File is referenced via a (hopefully shorter) relative pathname
cwd belongs to a (process’) task’s execution environment
The initial cwd is often called home

Example:
cwd = /home/lief/secret/examinations/SA
lpr ./solution exam

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 36/55

Relative VS. Absolute Pathnames
Absolute pathname

Path from root of FS to file, e.g.
/home/lief/secret/examinations/SA

Relative pathname
Path from current working directory to file

Note:

. refers to current directory

.. refers to parent directory

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 37/55

Benefit of Relative Pathname

Improved portability

Example: A program system

If you move the complete program system you must change all absolute
pathnames whereas relative pathnames can survive

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 38/55

Hierarchical FS (a la UNIX)

Unambiguous file names via pathnames, e.g.
/bin/passwd 6= /etc/passwd

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 39/55

UNIX Directory Operations

opendir

closedir

readdir

mkdir

rmdir

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 40/55

UNIX Link

Direct access to a file without navigation

UNIX hard link: ln filename linkname
(another name to the same file = same inode, file is only deleted if last
hardlink has been deleted, i.e. if refcount in inode = 0); invalid links are
not possible

Symbolic link: ln -s filename linkname
(a new file linkname with a link to a file with name filename,
whose file might be currently not mounted or not even exist.)

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 41/55

Acyclic-Graph FS Structure

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 42/55

File Sharing

In multi-user systems, files can be shared among multiple users
Three issues

Efficiently access to the same file?
How to determine access rights?
Management of concurrent accesses?

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 43/55

Access Rights (1)

None
User might not know of existence of file
User is not allowed to read directory containing the file

Knowledge
User can only determine the

file existence
file ownership

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 44/55

Access Rights (2)

Execution
User can load and execute a program, but cannot copy it

Reading
User can read the file for any purpose, including copying and execution

Appending
User can only add data to a file, but cannot modify or delete any data in the
file

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 45/55

Access Rights (3)

Updating
User can modify, delete and add to file’s data, including creating the file,
rewriting it, removing all or some data from the file

Changing protection
User can change access rights granted to other users

Deletion
User can delete the file

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 46/55

Access Rights (4)

Owner
Has all rights previously listed
May grant rights to other users using the following classes of users

Specific user
User groups
All (for public files)

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 47/55

Classical UNIX Access Rights (1)

total 1704
drwxr-x--- 3 lief 4096 oct 14 08:13 .
drwxr-x--- 3 lief 4096 oct 14 08:13 ..
-rw-r----- 1 lief 123000 feb 01 22:30 exam

First letter: file type
d for directories
- for regular files
k for block files
. . .

Three user categories:
user, group and others

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 48/55

Classical UNIX Access Rights (2)

Three access rights per category
read, write and execute

Execute permission for a directory = permission to access files in the directory
You must have the read permission to a directory if you want to list its content

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 49/55

Classical UNIX Access Rights (3)

Shortcomings
Three user(subject) categories is not enough
In Windows you have a finer granularity concerning access rights per folder
and per file, e.g. you can explicitly deny/allow access for a specific user

UNIX has introduced the concept of ACLs

An ACL is a list bound to a file f, containing all individual subjects &
their individual permissions how to access this file f

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 50/55

UNIX ACLs (1)

If I want to view the content of the ACL of the file exam in my current
directory, I can use the following command:

bellosa@i30s5:˜> getfacl exam
file: exam
owner: bellosa
group: i30staff
user::rwx
group::r--
other::---

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 51/55

UNIX ACLs (2)

If I wish to allow another person with an account on the same system to
access file exam, I use the setfacl command, e.g.

setfacl -m user:name:permissions file

name is loginID of the person to which you want to assign access,
permissions can be one or more of the following: r, w, x
file is the name of the file

Example:
I want to enable Philipp with an assumed loginID pkupfer to read &
modify, but not to execute my file exam: I would use:

setfacl -u user:pkupfer:rw exam1

1
Note: you always have to use the complete permission triple

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 52/55

UNIX ACLs (3)

Now when I type again getacl exam, the following information is
displayed:

bellosa@i30s5:˜> getfacl exam
file: exam
owner: bellosa
group: i30staff
user::rwx
user:pkupfer:rw-
group::r--
mask::rw-
other::---

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 53/55

Windows Access-control List
Management

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 54/55

Concurrent Access to Files
Some OSes provide mechanisms for users to manage concurrent
access to files

Examples: flock(), fcntl() system calls

Applications can lock
entire file for updating file
individual records for updating

Exclusive or shared:
Exclusive – Writer lock
Shared – Multiple readers allowed

Mandatory or advisory:
Mandatory – access is denied depending on locks held and requested
Advisory – processes can find status of locks and decide what to do

Motivation File Systems
Overview File Directory Access Rights

F. Bellosa – Betriebssysteme WT 2016/2017 55/55

	16. File Systems
	Motivation
	File Systems
	Overview
	File
	Directory
	Access Rights

